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Failure to canonicalize input can introduce vulnerability. Inadvertently canonicalizing input multiple times
can introduce vulnerability.

Description
Canonicalization is the process of transforming a potentially flexible data structure into one that has
guaranteed characteristics. It is a frequent technique for input data validation. For example, the same input
data "characters" can be encoded in many ways, ranging from 7-bit ASCII to variable-width multibyte
Unicode. Before a program that accepts such input uses it, it is frequently required that the input be
transformed into some canonical form that is universal (in the context of the program). Otherwise, even
simple text comparisons (e.g., length, equal, ordering) cannot be made.

For extensive coverage of this issue see [Howard 025 Chapter 10: All Input Is Evil!6].

Failure to Canonicalize (When It Was Needed)
When input with identical semantics can be supplied in multiple syntaxes, then it is usually wise to define
one of the syntaxes as "canonical" and transform all of the other representations into that one before using

the input. Even better is to disallow all input that is not canonical [Hoglund 047].8

Redundant Canonicalization (Which Is Not Idempotent)

When canonicalization of input is required, be sure that it only occurs once.9 In many representations, it is

not safe to canonicalize already canonicalized input [VU#58029910].
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